Exercise 44

In Exercises 41-58, find any intercepts and test for symmetry. Then sketch the graph of the equation.

$$
y=2 x^{2}+x
$$

Solution

To find the y-intercept, plug $x=0$ into the function.

$$
y=2(0)^{2}+(0)=0
$$

Therefore, the y-intercept is $(0,0)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
2 x^{2}+x=0 \\
x(2 x+1)=0 \\
x=\left\{-\frac{1}{2}, 0\right\}
\end{gathered}
$$

Therefore, the x-intercepts are $\left(-\frac{1}{2}, 0\right)$ and $(0,0)$. Replacing x with $-x$ changes the equation, so there's no symmetry with respect to the y-axis.

$$
y=2(-x)^{2}+(-x)=2 x^{2}-x
$$

Replacing y with $-y$ changes the equation, so there's no symmetry with respect to the x-axis.

$$
-y=2 x^{2}+x \quad \rightarrow \quad y=-2 x^{2}-x
$$

Replacing x with $-x$ and y with $-y$ changes the equation, so there's no symmetry with respect to the origin.

$$
-y=2(-x)^{2}+(-x)=2 x^{2}-x \quad \rightarrow \quad y=-2 x^{2}+x
$$

A graph of the function versus x is shown below.

